
Automating publishing
workflows through
standardization
XML publishing with RWS

Automating publishing workflows through standardization

2 | RWS

This white paper describes the use of XML standards to manage styles
in publishing and how XPP® supports standards-based publishing.

XPP is an adaptive publishing engine that formats structured data into consumable
content for print, PDF or virtually any other format for output.

Table of contents
Automating Publishing Workflows through Standardization ...3

Publishing is Evolving ... 3

Automation is the Answer .. 3

Publishing Models ... 4

Publishers and IT Leverage Standards .. 5

Where XSL-FO Falls Short ...6

XPP – An Adaptive Publishing Engine ...7

XML Content, PDF/UA and Cascading Style Sheets in XPP ... 8

Leveraging Web Services ... 9

Conclusions ..10

Appendix: A sample comparison of features implemented in XPP combined with CSS versus XSL-FO.11

Automating publishing workflows through standardization

3 | RWS

Automating Publishing
Workflows through
Standardization

Publishing is Evolving

At one time, publishers worked in a well-defined,
specialized area. Their job was to format content
for a single print channel, delivering primarily
PostScript or PDF. Although the Information
Technology (IT) function was entirely outside of
the publishing process, they were responsible
for providing the computing environment that
publishers used.

Unfortunately, this approach led to little interaction
between Publishing and IT. The available computing
standards did not directly support publishing
processes – publishers focused on content
preparation and formatting, while IT programmers
and computer scientists developed corporate
infrastructure and data standards.

Today, the advantages and wide adoption of
structured content and web-based technologies
are well known. As a result, the job of publishing
organizations has grown to include delivering
content formatted for multiple channels. These
channels include PDF for online delivery, HTML for
browser-based delivery and portable devices with
customized, end-user interfaces.

Multi-channel delivery is now expected. This
expectation challenges content providers to build
content in a form that can supply all of these
channels and has forced publishers into a new
working relationship with IT – which is a good thing
for content consumers.

Publishing is also evolving. New tools, smart apps,
powerful computing environments, the internet and
Cloud computing are changing the way content is
created, reviewed, proofed and formatted.

In the past, the computing environment was simply
there to support the publishing process. Today it is
part of how it happens and what is produced.

Finally, the value proposition of publishing is
changing. Can a publishing group elevate its
value to an organization by leveraging tools to
maintain strict formatting, or by investing in ways
to exploit content reuse through structured content
schemas? Is content inherently more valuable if
delivered faster or more accurately? How can cycle
times be reduced while demands for content over
multiple channels increases? How can you keep
costs down and still deliver quality? Is it possible
to take your publishing organization from a cost
center to a differentiator?

Automation is the Answer

The answer to these questions, not surprisingly,
requires automation – but automation alone is not
enough. For some time now, we’ve seen a variety
of computing solutions come to market with many
different editing, formatting and management
applications/tools and numerous new ways to
create and process content.

While these tools have helped with some processes
and performance is better, most publishers
have not fully achieved the promise of these
technologies.

With the advent of XML, the IT community and
publishers were finally working on the same page –
the opportunity for publishers to fulfill the promise
and solve their multi-channel delivery challenges
while getting the productivity gains needed to
remain viable and competitive.

Computing environments also continue to emerge
using service-oriented architectures (SOA) and Web
Services, making publishing processes accessible
to a wider audience of content creators. SOA is a
model for how applications interoperate as part of a
business solution.

Automating publishing workflows through standardization

4 | RWS

Web Services are how these applications or services
interact via the web using a set of standards to
define what services are available and how they
communicate with each other.

As the migration from interactive desktop to
batch publishing continues, the need to automate
supporting content delivery functions increases
– publishing becomes an on-demand service that
plays a more vital role in revenue-generating,
customer-centric business operations, creating
differentiation through publishing.

The ubiquitous nature of XML has expanded the
publishing process. Structured XML content is often
the norm for data creation and storage databases.
The XML family of standards for transformation
(XSLT) and formatting (XSL-FO) have matured
enough to normalize publishing infrastructures.
Both XSLT and XSL-FO offer ways to reorder or
transform data and to specify and apply formatting
information to XML content – but not without
some drawbacks. Finally, the use of Web Services
as a means of communicating and moving content
between applications adds a whole new dimension
to publishing workflows.

Publishing Models

Many publishing processes exist today,
with most based on either a batch (push)
model or an interactive (desktop) model.

The challenge of desktop publishing (DTP) is that
the tools are most useful for creating one-off,
graphically intense or low-volume documents.
DTP workflows do not scale easily to longer, more
complex publications.

Most desktop publishing systems are only
optimized for single-user interactivity. This creates
challenges of scale, efficiency and workflow as data
sources, complexity and volume increase.

Batch tools are designed for higher-volume data
publishing and/or processing larger amounts of
data through pre-established routines and styles.

Publishing is becoming an
on-demand service that plays a
more vital role in revenue-
generating, customer-centric
business operations, creating
differentiation through publishing.

Tools in this class support batch processing of
XML, but typically can’t provide the same content
interactivity or the formatted result that you can
with a desktop system. They also often have limited
processing power or automation (or both). In
addition, support via standards may not be very
robust (only limited parts of the standard are
applicable) or proprietary (they do not support the
standard or use closed methods to do so).

Another challenge in the batch model is that many
systems that provide automation do not always
produce high-quality publications with formatting
or pagination errors appearing in the output. In
these cases, creating an approved “final” publication
often requires multiple re-batches.

Each re-batch then processes the entire document
again, which fixes the known issues but often
introduces new formatting problems. Sometimes
resolving issues can involve repeated changes
to document styles. Iterative style manipulations
focused on individual document situations can
lead to style-management inefficiencies and
inconsistencies.

To address this, RWS incorporates the most efficient
publishing models with the best of both batch
and interactive models – highly automated batch
processing for complex documents combined with
interactive tools and single-page reprocessing for
overrides, or less structured documents.

XPP was designed to overcome these challenges
and expand opportunities for publishing
operations. XPP supports both batch and interactive
models while providing robust support for XML and
other available standards.

Automating publishing workflows through standardization

5 | RWS

Publishers and IT Leverage Standards

While desktop publishing is still commonly used for
one-off or low-volume work, corporate or enterprise
publishing jobs are commonly performed by service
bureaus or by in-house hosted publishing operations,
often with IT involvement.

The key to developing an effective, business-focused
publishing process is to create an automated
environment where tasks take place with little or
no manual intervention. To build this environment,
publishing and IT departments use standards-based
business systems to create and deliver publications.

This goal of creating more effective, integrated,
business systems and processes often leads to the
following conclusions:

• Service-oriented architectures provide the most
options for standards-based system integration
and interaction.

• User interaction with and between applications
needs to be more fluid and consistent. Web
Services provide the best foundation for
organizations to tailor the user experience
by profile, skill set or role across multiple
applications.

• User interfaces designed for productivity help
to distribute publishing functions, enable more
people to contribute to the content-creation
process, and allow both experts and consumers to
create their own personalized publications.

• Corporate-wide standards on the format and
presentation of published deliverables improve
document usability and brand identity, as well
as reduce development, support, training and
maintenance costs.

• Implementing a publishing system as an on-
demand service aids in revenue-generation,
customer-centric business operations and product
differentiation.

Automating publishing workflows through standardization

6 | RWS

Where XSL-FO Falls Short
XML, the standard most responsible for publishing
normalization, now has an ecosystem that
encompasses everything from content structure and
markup to systems communications protocols. Today,
there are a number of systems for creating, managing
and storing data in XML format. And thanks to the
web, systems effectively communicate using XML
standardized messages.

Through consistent data and open-system interaction,
content reuse and sharing are expanding rapidly.
To optimize reuse, however, the industry needed
more than just XML. It needed standards focused
on information transformation and presentation in
a multi-channel delivery environment, resulting in
standards to manage style sheets.

A popular style-sheet standard, XSL, generates XSL-
FO and leverages XSLT for transformation. However,
not all procedural-language programmers are
proficient with XSL. In addition, XSL only works for
XML documents. If your data is in another format, like
structured ASCII, it needs to be merged with other
data to generate an acceptable format.

To address this, RWS goes beyond XSL and uses
cascading style sheets (CSS) to open up print
publishing to any web developer. However, extensible
stylesheet language formatting objects (XSL-FO)
is still often used to describe style and formatting
information for XML content. XSL-FO is a language for
expressing the output format of XML documents and
is conveyed in a well-formed XML instance.

XSL-FO can be applied to many types of publishing,
such as statements, reports, marketing materials,
basic technical documentation and other, more
complex automated publishing outputs.

XSL-FO processing flows adhere to the batch model,
in which data is more complex and formatting more
important. Unfortunately, this workflow frequently
requires many re-batches of the entire publication. As
a result, XSL-FO can fall short for page-based decision
requirements such as footnotes, image position,
stacking, balancing and facing pages.

For high-end or sophisticated publications such
as legal publishing, loose-leaf output, journals, or
reference materials, this causes many issues. Because
XSL-FO necessarily performs a transformation (taking
from the source XML to create a new XML document),
it provides no interactive page editing ability and
gives publishers less control over fine typesetting
parameters. Although you could edit the resulting
XSL-FO document, it is very inefficient and doesn’t
allow for changes to a single page – everything is
reflowed.

In addition, batch composition using XSL-FO for
composing pages, sizing pages, locating figures, etc.,
requires multiple steps and provides fewer controls
than XPP does right out of the box. XSL-FO does not
provide the same level of typographic sophistication
as XPP for things like vertical justification between
lines, alignment of financial data, etc.

Figure 1. A sample XSL File

Automating publishing workflows through standardization

7 | RWS

XPP – An adaptive publishing engine
XPP (XML Professional Publisher) is an industry-
proven, standards-based composition, transformation
and rendering software. These capabilities are derived
from its adaptive publishing engine. It provides robust
functionality for complex, automated publishing in
technical documentation, commercial, legal, journal,
financial and pharmaceutical publishing markets.
Many leading corporations use XPP to process and
transform XML and other structured content into
high-quality PDF and print output.

XPP provides a single application capable of
supporting new and legacy approaches to
implementing style sheets. In XPP, you can define
style rules and have multiple passes to compose a
page. For example, if a graphic or text call-out is on
the same page as another graphic or text call-out, you
have multiple options to get the desired results.

XPP offers both batch (push) and interactive (desktop)
capabilities and has strong, continuously evolving
XML support. Based on this versatility, XPP is often
deployed as an enterprise publishing tool and is used
by many organizations as a formatting and print
“service” for content creators to publish high-quality
composed documents and other related outputs
and formats.

Creating and delivering accessible content is a desire
and requirement for many organizations.
XPP provides for the streamlined creation and
publication of PDF/Universal Accessibility (PDF/UA)
documents to comply with US Section 508 regulations
and ISO requirements.

Structured data (.xml)

<XML>
PDF

Paper

Color seperations

Graphics

Unstructured data

HTML

eBooks

Figure 2. The XPP Data-flow and Processing Model

Automating publishing workflows through standardization

8 | RWS

XML Content and CSS in XPP

XPP supports XML content with style and page set-
ups optimized for XML tagged data, attributes and
structures. It uses Cascading Style Sheets selectors,
optimized for XML-tagged data, to determine context
and can parse both valid and well-formed documents
as part of the composition. XPP has provided this level
of functionality in production for years, at some of the
most complex publishing environments in the world.

CSS is maintained by a working group which was
created by the World Wide Web Consortium (W3C).
The working group describes CSS as, “a simple
mechanism for adding style (e.g., fonts, colors,
spacing) to Web documents.”

Although it is still simple, many organizations have
pushed the standard to include HTML, XML, PDF,
etc. CSS is compatible with most browsers and many
applications and does not require a specific text editor
for authoring, giving more flexibility to the publisher.

The default or implied processing model identified
in the standard brings together an XML instance
and a CSS stylesheet, processing them through XPP
to create a file containing both content and style
information to produce paginated output.

XPP’s adaptive processing engine supports the CSS
processing model with the addition of interactivity and
robust processing capabilities required for complex
and/or high-volume publishing environments. XML
publishing processes benefit from XPP’s support for
XML content and CSS style statements to drive the
SXPP composition engine.

CSS offers many advantages to XSL-FO. CSS enables
users to automatically compose and render more
complex documents that are typically not supported
in FO (or by FO engines), offers the interactivity
often required for graphically intense documents or
for page corrections, and can support the import,
composition and export of valid XML files from the
XPP system.

CSS stylesheet
(formatting)

XPP interactive
mode

XML instance

HTML and
EDGAR HTML

PDF

XML round trip

Figure 3. The CSS Processing with XPP Batch and Interactive Capabilities.

Automating publishing workflows through standardization

9 | RWS

XPP support for CSS is built on the application’s core
XML content, its proven style management and its
processing model. Using CSS, XPP preserves the
original content, while using CSS style statements to
generate the selected style format to create paged
output. By doing this, the original content stays the
same and benefits from the cascading nature of CSS
to apply specific style rules with no transformation,
unlike XSL-FO, which performs content formatting
and transformation together.

In this processing model, XPP maintains a separation
between content and formatting, although content
transformations can be done before loading into XPP.
Using CSS, XPP uses style statements to determine
the document XML tag hierarchy to apply styles. By
not performing a transformation, the original XML
is unchanged and allows for editing and seeing the
edits “as is.” With XPP, style statements are applied to
flowing XML that retains the content, but now in page
form. This is how XPP allows for interactive editing,
reapplying styles to one page, to one block, to one
line, or to one character.

Leveraging Web Services

When RWS introduced the XPP Web Services
Development Kit, the core publishing power of its
adaptive publishing engine became available to a
wider range of users and operations. Through our
Web Services interface, users can use their browser
to proof, modify and publish documents from virtually
any location, reducing cycle times and enhancing
production quality.

This Web Services layer makes it easy to deploy
XPP as a publishing service in service-oriented
architectures for a variety of IT deployments
and hosted applications. The Web Services layer
also enables the deployment of configurable or
customizable browser interfaces to XPP.

Automating publishing workflows through standardization

Conclusions

The world of publishing continues to evolve. The
inherent connectivity and standardization of the web
have created many ways to offer software, services
and publishing automation tools to a wider variety of
users and operations.

RWS continues its commitment to automated
publishing workflows by supporting traditional,
current and future publishing models like publishing-
as-a-service for XPP (cloud). We’ll also continue
leveraging XML and the related XML working-group
solutions and the XML family of standards to support
efficient business practices and publishing models.
Our vision for standards-based publishing is:

XML for content and output of page
representation (export)

• HTML
• EDGAR HTML
• ePubs

CSS for formatting

• Replaces proprietary style development
• Pre-configured style sheets
• DITA/S1000D/Web and other structured-content

sources

Support for multiple languages

• Hyphenation support

Flexible pagination controls

• Footnotes
• Image control (position)
• Stacking/balancing
• Facing pages, etc.

Web Services for integration

• XSLT for transformations
(applied before loading into XPP)

• Content preservation

PDF/UA capabilities

• Tagging
• Bookmarks
• Annotations

RWS’s support of standards, combined with the
capabilities of our XPP adaptive publishing engine,
provide tremendous value today – and the foundation
to evolve and expand publishing automation
solutions for the future. XPP provides answers for
style management, with style standards such as CSS
and its publishing strength, it is the most powerful
standards-based batch and interactive publishing
product available.

Find out how RWS’s commitment to high-performance
publishing and XML standards can provide value to your
organization. Visit rws.com/xpp

or email askanS1000Dexpert@rws.com

xpp-publishing-workflow-rws-white-paper-a4-en-260321

About RWS

RWS Holdings plc is the world’s leading provider of technology-enabled language, content management and intellectual property
services. We help our customers to connect with and bring new ideas to people globally by communicating business critical content
at scale and enabling the protection and realization of their innovations.

Our vision is to help organizations interact effectively with people anywhere in the world by solving their language, content and
market access challenges through our collective global intelligence, deep expertise and smart technology.

Customers include 90 of the globe’s top 100 brands, the top 10 pharmaceutical companies and approximately half of the top
20 patent filers worldwide. Our client base spans Europe, Asia Pacific, and North and South America across the technology,
pharmaceutical, medical, legal, chemical, automotive, government and telecommunications sectors, which we serve from offices
across five continents.

Founded in 1958, RWS is headquartered in the UK and publicly listed on AIM, the London Stock Exchange regulated market (RWS.L).

For further information, please visit: www.rws.com

© All Rights Reserved. Information contained herein is deemed confidential and the proprietary information of RWS Group*.
*RWS Group shall mean RWS Holdings PLC for and on behalf of its affiliates and subsidiaries.

http://www.sdl.com/xpp
mailto:askanS1000Dexpert%40sdl.com?subject=
http://www.rws.com

11 | RWS

Appendix: A sample comparison of features implemented in XPP combined with CSS versus XSL-FO

White space is
controlled through
feathering and priority.
As a result, the page
can be filled out evenly.

White space is
pre-defined and
cannot be changed.

The border of the box
doesn’t have a bottom
line on the first page.
In XPP, you can indicate
that a note continues
on the next page.

In XSL-FO, you have
to have borders on all
sides. The work-around
is to put text in a table,
but processing and
maintenance become
more difficult.

Vertical Justification

XPP XSL-FO

Continuation

Image spanning multiple
columns

In XPP, the image can
span multiple columns
easily.

In XSL-FO, you can only
resize the image to the
width of the column.

12 | RWS

Appendix: A sample comparison of features implemented in XPP combined with CSS versus XSL-FO

In XSL-FO, if an image is too
big for a page, the image will
be cut off. It is not possible
to define rules to use a
different page orientation.

In case the image is
larger than the text
in the first step, you
can have the image
overflow into the
second step.

In XSL-FO, the only way to
do this is to use a table to
render the information.
This complicates style
development greatly, as
you are misusing a table to
achieve the correct layout.
It is then impossible to have
the first image overflow into
the second step.

Rotating a page based
on the size of an image

XPP XSL-FO

Image Alignment

The only way to do this in XSL-FO is to define a
different page sequence. Based on some semantics
of the image (defined in the XML), you could use
this landscape made page sequence. The issue then
becomes getting the correct border into this new
page sequence.

Headers can be repeated,
as they are independent
from page sequences (text
registers).

InL XPP, you can calculate
the width of an image. If the
image does not fit the page,
you can switch the next page
into landscape mode.

In XPP, you have the
flexibility to reposition
images into four
locations: Top, Bottom,
Center, Left-Right
Center.

In XSL-FO, this image is
always rendered in the
location where it resides
in the XML.

Repositioning Images

13 | RWS

Appendix: A sample comparison of features implemented in XPP combined with CSS versus XSL-FO

XSL-FO will produce
unwanted whitespace on the
preceding page.

Repositioning text because
image overflowed

XPP XSL-FO

The XML located the
text below the image.
In XPP, you have the
flexibility to fill out the
page and show the text
before the image.

The text will be placed after
the image.

In XSL-FO, the title
needs to stay within
the boundaries of
the column. A long
title will always wrap,
pushing the rest of
the text down.

Titles can span
multiple columns

Columns of
different sizes

In XSL-FO, the only way to get columns
of a different size, is to put everything
on the page into a table.

You can only specify a column gap, but
not the size of the individual columns.

Footnotes and
columns

© 2021 XPP and Contenta are trademarks or registered trademarks of RWS

